Strongly Elliptic Systems and Boundary Integral Equations

Author: William McLean,William Charles Hector McLean

Publisher: Cambridge University Press

ISBN: 9780521663755

Category: Mathematics

Page: 357

View: 6844

This 2000 book provided the first detailed exposition of the mathematical theory of boundary integral equations of the first kind on non-smooth domains.

Retarded Potentials and Time Domain Boundary Integral Equations

A Road Map

Author: Francisco-Javier Sayas

Publisher: Springer

ISBN: 3319266454

Category: Mathematics

Page: 242

View: 2888

This book offers a thorough and self-contained exposition of the mathematics of time-domain boundary integral equations associated to the wave equation, including applications to scattering of acoustic and elastic waves. The book offers two different approaches for the analysis of these integral equations, including a systematic treatment of their numerical discretization using Galerkin (Boundary Element) methods in the space variables and Convolution Quadrature in the time variable. The first approach follows classical work started in the late eighties, based on Laplace transforms estimates. This approach has been refined and made more accessible by tailoring the necessary mathematical tools, avoiding an excess of generality. A second approach contains a novel point of view that the author and some of his collaborators have been developing in recent years, using the semigroup theory of evolution equations to obtain improved results. The extension to electromagnetic waves is explained in one of the appendices.

Pseudo-Differential Operators and Related Topics

Author: Paolo Boggiatto,Luigi Rodino,Joachim Toft,M. W. Wong

Publisher: Springer Science & Business Media

ISBN: 3764375140

Category: Mathematics

Page: 244

View: 9717

Contains articles based on lectures given at the International Conference on Pseudo-differential Operators and Related Topics at Vaxjo University in Sweden from June 22 to June 25, 2005. Sixteen refereed articles cover a spectrum of topics such as partial differential equations, Wigner transforms, mathematical physics, and more.

Sobolev Spaces, Their Generalizations and Elliptic Problems in Smooth and Lipschitz Domains

Author: Mikhail S. Agranovich

Publisher: Springer

ISBN: 3319146483

Category: Mathematics

Page: 331

View: 2768

This book, which is based on several courses of lectures given by the author at the Independent University of Moscow, is devoted to Sobolev-type spaces and boundary value problems for linear elliptic partial differential equations. Its main focus is on problems in non-smooth (Lipschitz) domains for strongly elliptic systems. The author, who is a prominent expert in the theory of linear partial differential equations, spectral theory and pseudodifferential operators, has included his own very recent findings in the present book. The book is well suited as a modern graduate textbook, utilizing a thorough and clear format that strikes a good balance between the choice of material and the style of exposition. It can be used both as an introduction to recent advances in elliptic equations and boundary value problems and as a valuable survey and reference work. It also includes a good deal of new and extremely useful material not available in standard textbooks to date. Graduate and post-graduate students, as well as specialists working in the fields of partial differential equations, functional analysis, operator theory and mathematical physics will find this book particularly valuable.

The Fast Solution of Boundary Integral Equations

Author: Sergej Rjasanow,Olaf Steinbach

Publisher: Springer Science & Business Media

ISBN: 0387340424

Category: Mathematics

Page: 284

View: 1269

This book provides a detailed description of fast boundary element methods, all based on rigorous mathematical analysis. In particular, the authors use a symmetric formulation of boundary integral equations as well as discussing Galerkin discretisation. All the necessary related stability and error estimates are derived. The authors therefore describe the Adaptive Cross Approximation Algorithm, starting from the basic ideas and proceeding to their practical realization. Numerous examples representing standard problems are given.

Fourier BEM

Generalization of Boundary Element Methods by Fourier Transform

Author: Fabian M.E. Duddeck

Publisher: Springer Science & Business Media

ISBN: 3540456260

Category: Mathematics

Page: 182

View: 2457

Like FEM, the Boundary Element Method (BEM) provides a general numerical tool for the solution of complex engineering problems. In the last decades, the range of its applications has remarkably been enlarged. Therefore dynamic and nonlinear problems can be tackled. However they still demand an explicit expression of a fundamental solution, which is only known in simple cases. In this respect, the present book proposes an alternative BEM-formulation based on the Fourier transform, which can be applied to almost all cases relevant in engineering mechanics. The basic principle is presented for the heat equation. Applications are taken from solid mechanics (e.g. poroelasticity, thermoelasticity). Transient and stationary examples are given as well as linear and nonlinear. Completed with a mathematical and mechanical glossary, the book will serve as a comprehensive text book linking applied mathematics to real world engineering problems.

Integral Equations

Theory and Numerical Treatment

Author: Wolfgang Hackbusch

Publisher: Springer Science & Business Media

ISBN: 9783764328719

Category: Mathematics

Page: 362

View: 2075

The theory of integral equations has been an active research field for many years and is based on analysis, function theory, and functional analysis. On the other hand, integral equations are of practical interest because of the «boundary integral equation method», which transforms partial differential equations on a domain into integral equations over its boundary. This book grew out of a series of lectures given by the author at the Ruhr-Universitat Bochum and the Christian-Albrecht-Universitat zu Kiel to students of mathematics. The contents of the first six chapters correspond to an intensive lecture course of four hours per week for a semester. Readers of the book require background from analysis and the foundations of numeri cal mathematics. Knowledge of functional analysis is helpful, but to begin with some basic facts about Banach and Hilbert spaces are sufficient. The theoretical part of this book is reduced to a minimum; in Chapters 2, 4, and 5 more importance is attached to the numerical treatment of the integral equations than to their theory. Important parts of functional analysis (e. g. , the Riesz-Schauder theory) are presented without proof. We expect the reader either to be already familiar with functional analysis or to become motivated by the practical examples given here to read a book about this topic. We recall that also from a historical point of view, functional analysis was initially stimulated by the investigation of integral equations.

Boundary Integral Equations

Author: George C. Hsiao,Wolfgang L. Wendland

Publisher: Springer Science & Business Media

ISBN: 9783540685456

Category: Mathematics

Page: 620

View: 8095

This book is devoted to the mathematical foundation of boundary integral equations. The combination of ?nite element analysis on the boundary with these equations has led to very e?cient computational tools, the boundary element methods (see e.g., the authors [139] and Schanz and Steinbach (eds.) [267]). Although we do not deal with the boundary element discretizations in this book, the material presented here gives the mathematical foundation of these methods. In order to avoid over generalization we have con?ned ourselves to the treatment of elliptic boundary value problems. The central idea of eliminating the ?eld equations in the domain and - ducing boundary value problems to equivalent equations only on the bou- ary requires the knowledge of corresponding fundamental solutions, and this idea has a long history dating back to the work of Green [107] and Gauss [95, 96]. Today the resulting boundary integral equations still serve as a major tool for the analysis and construction of solutions to boundary value problems.